

Hydroboration of vinyl silanes with bis(pentafluorophenyl)borane: ground state β -silicon effects.

Daniel J. Parks and Warren E. Piers*1

Department of Chemistry, University of Calgary, 2500 University Drive N. W., Calgary, Alberta, Canada, T2N 1N4.

Received 5 August 1998; revised 16 October 1998; accepted 17 October 1998

Abstract

Hydroboration of aliphatic vinyl silanes with the highly electrophilic *bis*-(pentafluorophenyl)borane, $HB(C_6F_5)_2$, gives predominantly the thermodynamically favored regioisomer with boron and silicon on the same carbon. Thermodynamic product mixtures are obtained because equilibration of isomers through boryl migration is facile in the products of hydroboration with $HB(C_6F_5)_2$. The 1,1-substituted isomers are the most stable by virtue of a ground state β -silicon effect involving hyperconjugation between the Me_3Si group and the electrophilic borane center. More complex thermal rearrangements are observed when aromatic vinyl silanes are hydroborated with $HB(C_6F_5)_2$. Experiments using ^{13}C -labelled and *para*-substituted substrates provide mechanistic information on these rearrangements which appear to be driven by the formation of compounds which can engage in the ground state β -silicon interaction. The mechanistic proposals given are supported by computational results performed at the AM1 level. Θ 1998 Elsevier Science Ltd. All rights reserved.

Keywords: Boron and compounds; Hydroboration; Silicon and compounds; Olefins

1. Introduction.

Vinyl silanes have long been recognized as being special substrates for the hydroboration reaction in that, depending on the borane reagent, unusual regioselectivities can be obtained. Seyferth originally reported on the hydroboration of vinyltrimethylsilane using "BH₃" and found that the 1-trimethylsilyl and 2-trimethylsilylethanol isomers were produced in a roughly 60:40 ratio after work-up [1], suggesting a regiochemical preference for the 1-bora-1-sila-substituted hydroboration product.

Phone: 403-220-5746. FAX: 403-289-9488. email: wpiers@chem.ucalgary.ca.

Since then, several studies have reported on the hydroboration of this and other vinylsilane substrates using a variety of borane reagents [2]. In general, these reactions are kinetically controlled and the outcomes can be rationalized on the basis of steric arguments. For example,

as the data shown in Scheme 1 demonstrates, the 1,1 products of hydroboration can be formed exclusively by placing methyl substituents on the 2-carbon of the vinylsilane C=C double bond. In the parent, unsubstituted vinyl silane, use of bulkier borane reagents tends to favor the 1,2 products as demonstrated by the outcomes of hydroboration of vinylsilane with "BH₃" vs IPCBH₂ (IPC = isopinocampheyl). Use of even bulkier diorganoboranes invariably produces the 1,2 isomer exclusively[3].

It could be argued on the basis of the well known β -silicon effect for the stabilization of carbocations [4] that the 1,1 substituted isomers should be thermodynamically favored over the (apparently) more sterically open 1,2 isomers, since boranes are isoelectronic with carbocations

(I and II). Hyperconjugation between the Si-C bond and the empty p-orbital on the borane should provide for stabilization of the ground state of the 1,1 isomer relative to the 1,2 isomer provided the counterbalancing steric repulsions between BR₂ and SiR₃ are not too severe. In fact, the steric requirements of the Me₃Si group are markedly

lower than related hydrocarbyl substituents given the longer Si-C bond, so these BR₂/SiMe₃ interactions are not as severe as one might think. If a viable low energy equilibration pathway were available for isomer interconversion, reactions regionselective for the 1,1 isomer might therefore be observable.

We recently reported the new hydroboration reagent $HB(C_6F_5)_2$, 1 [5]. In addition to being highly reactive towards olefins, we found that boryl migration in the product boranes is much more facile than for other BR_2 fragments, provided β -hydrogens are present. The boryl migration likely takes place via a retrohydroboration/rehydroboration sequence, which represents an equilibration pathway which should allow for access to the most thermodynamically favored of available isomers. Furthermore, given the high electrophilicity imparted to the boron center by the electron withdrawing C_6F_5 groups, the strength of the

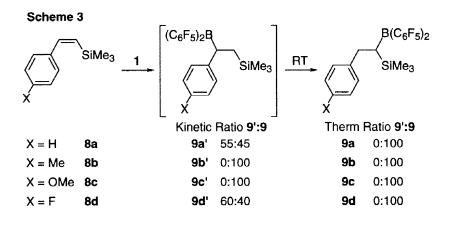
boron/silicon interaction (II) ought to be greater than for other BR_2 groups. In fact, we noticed this effect in the dihydroboration of $Me_3SiCH_3\equiv CH$ with 1 [5a]; this observation prompted us to examine the reactions of 1 with a variety of silylated olefins and the results are described herein.

2. Results and Discussion.

2.1 Hydroboration of aliphatic trimethylsilyl alkenes.

To assess the directing ability of the Me₃Si group in hydroborations with 1, we first examined the reactions of 1 with vinyltrimethylsilane, allyltrimethylsilane and 6-trimethylsilyl-1-hexene (Scheme 2). In each substrate, the predominant product under kinetic conditions is the

regioisomer derived from anti-Markovnikov addition of B-H to the C=C double bond, *i.e.*, the terminal isomers 2, 4, and 6. Upon thermal equilibration, each of these compounds isomerize to a thermodynamic mixture of the terminal boryl isomers and the isomers with the $B(C_6F_5)_2$ group β to the silicon atom (3, 5, and 7). In the case of vinyl silane, the predominance of 3 in the final product mixture contrasts sharply with the results of hydroboration with other diorganoboranes of comparable steric bulk to 1 [3].


The final ratio of isomers is roughly the same in each case, favoring the 1,1 isomer by about 6:1. During the isomerization of $4 \rightarrow 4:5$ and $6 \rightarrow 6:7$, no isomers with the boryl moiety along the alkyl chain are observed, indicating that once the boryl group moves out of the terminal position migration to either end of the chain is rapid under the conditions employed. The equilibrium mixture of 6:7 can also be obtained by hydroboration of (Z)-1-trimethylsilyl-1-hexene and thermal equilibration of the kinetic product mixture, which consists of about a 2:1 mixture of 7 and other isomers.

Attempts to study the equilibrium of involving 2 and 3 over a range of temperatures (80-120°C) showed that the ratio is essentially invariant between these limits even with long equilibration times allowed. A K_{eq} of 6-7 corresponds to a ΔG° of about 1.5 kcal mol⁻¹, which is probably a good estimate of ΔH° given that ΔS° should be close to 0 for this equilibrium; it is therefore not surprising that the equilibrium is not very sensitive to changes in temperature. Since the equilibrium is not more completely shifted towards the 1,1 isomers, the energetic benefit of the ground state β silicon effect in these compounds is not substantial enough to fully counteract the unfavorable steric interactions between the geminal Me₃Si and B(C₆F₅)₂ group.

Nonetheless, the 1,1 isomers are favored in this equilibrium, indicating that the β -silicon effect in these compounds must provide at least 1.5 kcal mol⁻¹ in stabilization.

2.2 Hydroboration of aryl substituted vinylsilanes.

We reasoned that more selective reactions may be observed in substrates which lack β -hydrogens around the double bond. (Z)-aryl substituted vinyl silanes 8a-d were therefore subjected to hydroboration with 1 (Scheme 3). For X = H or F, a mixture of the vicinal (9a', 9d') and geminal (9a, 9d) isomers is initially produced, slightly favouring the former. At room temperature these mixtures gradually convert to the 1,1 substituted compounds exclusively. For

the substrates with electron donating groups in the *para* position, the 1,2 isomers are not detected. Thus, for X = Me or OMe, either isomerization from the 1,2 to the 1,1 isomer is much more rapid, or the donor properties of the X substituent enhances kinetic selectivity of H-B addition to the C=C double bond. The latter would be consistent with the accepted picture of the polarity of the 4-centered transition state for hydroboration [6]. At any rate, for substrates of this type, 100% regioselectivity is possible by virtue of the facility of $B(C_6F_5)_2$ migration and the thermodynamic advantage provided by the ground state β -silicon effect. With other hydroboration reagents, the lack of low energy equilibration pathways means that regioselectivity is dictated largely by kinetic and not thermodynamic factors.

The substrates 8a-d illustrate a straightforward case of how to utilize the interaction between $B(C_6F_5)_2$ and $SiMe_3$ to effect regioselective hydroborations. Other substrates bring to light the steric limitations of this approach, but also show that rearrangements which do not involve

retrohydroboration/rehydroboration occur to allow the boron and silicon groups to migrate to the same carbon and take advantage of the β -silicon effect. For example, 1-phenyl-1-trimethylsilylethene 10 is rapidly hydroborated regioselectively to borane 11 (Scheme 4) in a reaction whose outcome is probably dictated by sterics. When subjected to thermal equilibration at 120°C, boryl migration to the 1-carbon is not observed; rather, an isomerization to borane 9a occurs quantitatively over the course of several hours. This surprising observation requires that either the phenyl and $B(C_6F_5)_2$ groups exchange sites, or the Me₃Si group undergoes a 1,2 shift of some kind. Experiments where the 1-carbon is selectively ¹³C labelled in substrate 10 (as indicated by the "*" in the Scheme) show that, formally at least, it is the Me₃Si substitutent which migrates, since the label remains in the benzylic position. The mechanistic implications of this observation will be discussed in more detail below.

Hydroboration reactions using diaryl substituted vinyl silanes were examined next. (Z)-1,2-diphenyl-1-trimethylsilylethene, 12, reacted rapidly with 1 to produce borane 13 (Scheme 5). Upon heating, a product mixture consisting of starting olefin 12, boryl silane 9a and phenyl-bis-(pentafluorophenyl)borane 14 in a 1:1:1 ratio is observed. Assuming that elimination of PhB(C₆F₅)₂ from 13 is the first step in this reaction, the observed stoichiometry suggests that the olefin resulting from elimination (i.e., (E/Z)-8a) reacts with 13 to produce 12 and borane 9a. This is a reasonable postulate since, under these conditions, retrohydroboration of 1 from 13 should be facile. Indeed, if in situ generated 13 is treated with vinylsilane 8a at room temperature, immediate production of the 12/9a mixture is observed (Scheme 6).

Attempts to follow the deuterium label in d_1 -11, formed from 10 and d_1 -1 failed to give any information on this process, since the deuterium label is readily scrambled under the conditions employed. Since scrambling occurs prior to product formation, it likely proceeds through PhC[B(C_6F_5)₂](SiMe₃)CH₂D formed via retrohydroboration/rehydroboration from 11.

The chemistry of Scheme 5 thus appears to begin with endothermic elimination of $PhB(C_6F_5)_2$ from the hydroboration product 13. The question arises as to whether it is the geminal or the vicinal (relative to the $B(C_6F_5)_2$ moiety) phenyl group which is eliminated. The substrate 1-trimethylsilyl-2,2-diphenylethene, 15, is hydroborated regiospecifically to the borane 16 (Scheme 7), which is thermally stable for days at 120°C, suggesting that in order to eliminate 14, the aryl group must be on the same carbon as the boryl group. However, since it is possible that elimination of 14 from 13 could proceed via the regioisomer of 13 obtained via boryl migration (*i.e.*, 13' Scheme 5),² we decided to address this question more concretely by using two series of *para*-substituted diaryl vinylsilanes. In addition to identifying the source of the eliminated aryl group, relative rates of elimination as a function of the electronic properties

Scheme 7

SiMe₃ 1 SiMe₃
$$120^{\circ}$$
C No Reaction

of the *para* substituent provide useful mechanistic insight into the process.

The substrates 17b-d and 19b-d (Schemes 8 and 9) were prepared using literature methodology and fully characterized (see Experimental section). Hydroboration produces the silaboranes 18b-d and 20b-d exclusively, which were then thermolyzed at 80°C. In the former

series, where the *para*-substituted aryl group is geminal to the $B(C_6F_5)_2$ fragment, the eliminated aryl- $B(C_6F_5)_2$ contains the substituent, while **9a** is the only borasilane product present in the resulting product mixtures. Conversely, when **20b-d** are subjected to thermal duress, unsubstituted **14** is the sole elimination product, while borasilanes **9b-d** (identified spectroscopically by comparison to the products of Scheme 3 above) are produced depending on the particular substitutent involved. Thus, the aryl group geminal to the $B(C_6F_5)_2$ fragment is exclusively eliminated in this reaction.

In order to assess the relative rates of this process as a function of the X substituent, samples

of silaboranes 18b-d and 20b-d were prepared such that they were of equal concentration. The six samples were then heated simultaneously and the progress of the elimination monitored by ${}^{1}H$ NMR spectroscopy. Within both series of compounds, the relative rates are dependent upon the ability of X to donate electron density via resonance, *i.e.*, OMe > F > Me. A comparison of the relative rates between the two series of compounds shows that, for a given X substituent, compounds 20 react faster than the corresponding isomer in compounds 18. Thus, substitution on the aryl group which is *not* eliminated has a greater effect on the overall rate of the process.

Table 1
Select Parameters of AM1 Optimized Structures of Borane 13 and Transition State Between 13 and Intermediate III.

Parameter ^a	13	Transition State	$\Delta_{ m p}^{\;\; b}$
$\Delta H_f (kcal mol^{-1})$	-345.55	-301.42	44.13
$R_{Ci-C_{\alpha}}(A)$	1.4914	1.9299	0.4385
R_{Ci-B} (Å)	2.5566	1.6599	-0.8967
$R_{C_{\alpha}-B}(A)$	1.5595	1.5360	-0.0235
$q_{Ci}(e)$	-0.07	-0.22	-0.15
$q_o, q_m, q_p(e)$	-0.12,-0.13,-0.13	-0.05,-0.16,-0.07	0.07,-0.03,0.06
$q_{C_{\alpha}}(e)$	-0.07	0.08	0.21
$q_{B}(e)0.44$	0.15	-0.29	
q _{Si} (e)	1.23	1.28	0.05

^a C_i , C_o , C_m , $C_p = ipso$, ortho, meta, and para-carbons of migrating phenyl. ^b $\Delta_p = TS$ parameter - 13 parameter.

Scheme 10

2.3 Mechanism.

A mechanism which accounts for these observations is given in Scheme 10. The first step involves Ar migration from the α -carbon to boron which leads to the zwitterionic ylide intermediate III. The carbocation formed is stabilized electrostatically by the adjacent borate counterion as well as through the β -silicon effect from the trimethylsilyl substituent. Likely this step is reversible under the conditions employed, since alkyl and aryl migrations from borate boron centers to α -carbons have ample precedent in, for example, the stereospecific synthesis of olefins from alkynyl borates and an electrophile [7]. The analogous reaction of vinyl borates is less common, but has also been observed [8].

Support for such a picture of the reaction was garnered through semi-empirical modeling of the transition state for the phenyl migration step at the AM1 level using the commercially available Spartan suite of programs as described in the Experimental section. The structure of the calculated transition state between 13 and intermediate III is shown in Figure 1, while relevant parameters associated with borane 13 and this transition state are given in Table 1, along with the difference between the parameters given for the two structures.

As is apparent from the structure in Figure 1, the transition state resembles a phenonium ion. On going from 13 to the transition state of Figure 1, the C_{α} - C_{ipso} bond length increases while the B- C_{ipso} shortens, such that the migrating phenyl group is almost equidistant from the two atoms. The calculated C_{ipso} - C_{ortho} , C_{ortho} - C_{meta} and C_{meta} - C_{para} distances (averaged) are 1.407, 1.395 and 1.396Å, respectively. Positive charge delocalization into the migrating phenyl group is demonstrated by the increased charge on both C_{para} and C_{ortho} , while the increased negative charge density on B and C_{ipso} is consistent with incipient bond formation. The shortening of the B- C_{α} bond may be indicative of the development of an electrostatic interaction between these two atoms as the charge separation increases. A slight increase in the positive charge associated

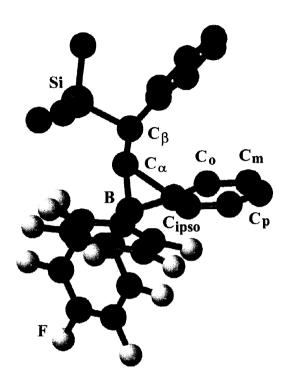


Figure 1. Semi-Empirical (AM1) Transition State for Phenyl Migration in 13 → III.

with the silicon atom and the orientation of the Me₃Si group indicates that the β -silicon effect is acting to stabilize the developing positive charge at C_{α} to some extent. Note that the orientation of the Me₃Si with respect to the plane of the developing carbocation at C_{α} is as would be expected for hyperconjugative stabilization.

The substituent effects on migration of the Ar group are consistent with this picture of the transition state, where the developing positive charge is delocalized throughout the aromatic ring. In such a transition state, groups capable of electron donation through resonance should have a stabilizing influence. Clearly, the OMe group is the best resonance donor, accounting for the relatively large effect this group has on the rate of migration. Although a fluoro substituent is usually thought of as an electron withdrawer, it does so inductively; in situations of high electron demand, it is capable of electron donation through resonance [9]. Indeed, it is more effective in this role than the Me substituent, accounting for the somewhat counterintuitive rate trend observed for these two groups.

Turning back to Scheme 10, reversible formation of intermediate III is followed by migration of the Me₃Si group to form benzylic cation IV in a 1,2-sila-Wagner-Meerwein rearrangement [10],[11]. Likely, this is the rate determining step in the reaction. Species IV immediately collapses to 14 and the monoaryl vinylsilane product, which triggers the formation of the other observed products as shown above in Scheme 6. Resonance donating substitutents in the *para* position of the Ar' group would stabilize this benzylic cation, and since this is the highest

energy step, these effects would be expected to more pronounced than the substituent effects on the Ar migration step, as is observed.

Attempts to model the Me₃Si migration step failed to find a stable minimum for IV indicating that it is likely not a true intermediate in the process, and that loss of PhB(C_6F_5)₂ from IV occurs concommitantly with silyl migration with a negligible barrier. This is also consistant with the notion that this step is the rate determining part of the process. It is possible, however, to

implicate species IV chemically in a separate series of experiments as depicted in Scheme 11. Hydroboration of phenylacetylene leads to the vinylborane shown [5a], which, when treated with PhLi, gives borate 21. This vinylborate is related to that which would obtain if "Me₃Si⁺" formally dissociated from species IV; thus, IV can be potentially generated *in situ* by treatment of 21 with a source of "Me₃Si⁺". Accordingly, when 21 is treated with Me₃SiOTf, the majority of the product mixture is comprised of (E)-8a and 14, with about 20% of the RR/SS diastereomer of 13 present. Addition of "Me₃Si⁺" to the α -vinyl carbon generates IV *in situ*, which immediately yields the products of PhB(C₆F₅)₂ loss. The proportion of electrophile which adds to the β -vinyl carbon gives a carbocation analogous to III which would be expected to rapidly transfer a phenyl group from boron to carbon at room temperature. Hence, the diastereomer of 13 is also observed in the product mixture of this reaction.

The observations concerning the rearrangement of Scheme 4 discussed above can now be accounted for by invoking an H⁻ transfer instead of aryl migration (Scheme 12). Although retrohydroboration through β -elimination is much more favorable, at higher temperatures, loss of 1 from 11 by α -elimination becomes competitive. Although this step is also reversible, once the rate-limiting 1,2-Me₃Si shift occurs the rearrangement is essentially complete. This mechanism is thus consistent with the 13 C-labelling results.

3. Conclusions.

The high electrophilicity of the $-B(C_6F_5)_2$ group allows for high regionselectivity in the hydroboration of certain vinyl silanes using the reagent $HB(C_6F_5)_2$. For substrates

Scheme 12

RCH=CHSiMe₃, the energetic benefit afforded by a ground state β -silicon effect between the trialkylsilyl group and the boron center leads to reactions selective for the 1,1-borasilane products. Even though kinetic product mixtures are produced, the facility of retrohydroboration with this reagent opens a low energy pathway for equilibration to thermodynamically more stable products which is unavailable to other boranes under mild conditions. Furthermore, if R is a group which does not allow for boryl migration (e.g. aryl groups), the reactions are highly selective. This chemistry offers access to potentially useful α -silylated alcohols and acyl silanes upon oxidation [5b] of the hydroboration products.

The -B(C_6F_5)₂ is also electrophilic enough to induce H or Ar migrations from C_α to boron at higher temperatures. These migrations trigger a 1,2-shift of the Me₃Si group which ultimately allows for ground state β -silicon interactions to form with the -B(C_6F_5)₂ moities. This chemistry has questionable potential for useful applications but is nonetheless a testament to the thermodynamic favorability of the ground state β -silicon effect in these systems.

4. Experimental Section.

4.1 General.

General methods for the manipulation of compounds have been described previously [12]. Borane 1 was prepared as described elsewhere [5]. Vinyltrimethylsilane and allyltrimethylsilane were purchased from Aldrich Sigma and used as received. The following vinyl silanes were prepared according to literature reports: 6-trimethylsilyl-1-hexene [13],[14]; (Z)-1-trimethylsilyl-1-hexene [15]; (Z)-1-trimethylsilyl-2-phenylethene, 8a[16]; (Z)-1-trimethylsilyl-2-(4-methylphenyl)ethene, 8b[17]; (Z)-1-trimethylsilyl-2-(4-methylphenyl)ethene, 8c [18]; 1-phenyl-1-trimethylsilylethene, 10[19]; (Z)-1,2-diphenyl-1-trimethylsilylethene, 12, and 1-trimethylsilyl-2,2-diphenylethene, 15 [20]. \(^{13}C-labelled 10 was

prepared from Ph¹³C(O)CH₃ which was purchased from Cambridge Isotopes. The following trimethylsilylalkynes were prepared either by quenching in situ generated lithium acetylides with Me₃SiCl or by palladium catalyzed coupling of aryl bromides with Me₃SiC≡CH [21] and identified through comparison with literature spectral data: 1-trimethylsilyl-1-hexyne [22]; trimethylsilylphenylacetylene, trimethylsilyl(4-methylphenyl)acetylene and trimethylsilyl(4methoxyphenyl)acetylene [23]; trimethylsilyl(4-fluorophenyl)acetylene [24]. (pentafluorophenyl)borane, 14, was prepared by reaction between PhLi and ClB(C₆F₅)₂ [25] and identified by comparison to literature data [26]. NMR spectroscopy was carried out in C₆D₆ unless otherwise noted. Hydroborations with 1 were carried out as described previously [1] and monitored by ¹H NMR spectroscopy; hydroboration products were characterized by ¹H, ¹³C, ¹⁹F and ¹¹B NMR spectroscopy. ¹H and ¹³C spectra were referenced internally to solvent resonances. ¹³C resonances for the C_6F_5 groups in all of the new -B(C_6F_5)₂ substituted compounds appearred as multiplets at $146.5\pm1.0~(C_{ortho})$, $143.0\pm0.7~(C_{meta})$, $137.7\pm0.4~(C_{para})$ and 115.4 ± 1.0 (C_{inso}) ppm. ¹⁹F NMR spectra were acquired without proton decoupling and referenced externally to hexafluorobenzene at -163.0 ppm [27]. Signals appearred as multiplets but only chemical shifts are reported. ¹¹B NMR data is reported as the chemical shift relative to external BF₃•Et₂O at 0.00 ppm, with the width at half height in Hz given in brackets.

4.2 Hydroboration of Vinyltrimethylsilane.

Vinyltrimethylsilane (15.3 μ L, 0.099 mmol) was added to a suspension of **1** (34.3 mg, 0.099 mmol) in C₆D₆, producing boranes **2** and **3** in a 94:6 ratio. NMR data for **2**: ¹H: 1.81 (m, 2H, CH₂B). 0.44 (m, 2H, SiCH₂). 0.03 (s, 9H, SiCH₃). ¹³C: 23.3 (BC). 8.1 (SiC). -2.2 (SiCH₃). ¹⁹F: -132.2 (F_o). -149.4 (F_p). -163.0 (F_m). ¹¹B: 68.2 (900). This mixture was thermally equilibrated at 120°C for 16 hours resulting in ratio of 13:87 (**2:3**). NMR data for **3**: ¹H: 2.50 (q, J = 6.4 Hz, 1H, SiBCH); 1.07 (d, 3H, CH₃); 0.08 (s, 9H, SiCH₃). ¹³C: 36.7 (BCH, C₂); 11.8 (CH₃); -0.4 (SiCH₃). ¹⁹F: -132.7 (F_o); -151.2 (F_p); -163.1 (F_m). ¹¹B: 72.2 (650).

4.3 Hydroboration of Allyltrimethylsilane

Allyltrimethylsilane (15.4 μ L, 0.097 mmol) was added to a suspension of **1** (33.6 mg, 0.097 mmol) in C₆D₆, producing borane **4** exclusively. NMR data for **4**: ¹H: 2.02 (t, J = 7.5 Hz, 2H, CH₂B); 1.56 (m, 2H, CH₂); 0.59 (m, 2H, SiCH₂); -0.04 (s, 9H, SiCH₃). ¹³C: 36.6 (BC); 21.0 (CH₂); 19.9 (SiC); -1.8 (SiCH₃). ¹⁹F: -132.4 (F₀); -149.1 (F_p); -162.8 (F_m). ¹¹B: 73.7 (770). The sample was thermally equilibrated at 90°C for 3 hours resulting in a ratio of 12:88 (**4**:**5**). NMR data for **5**: ¹H: 2.55 (dd, J = 3.3 Hz and J = 9.8 Hz, 1H, SiBCH); 1.66, 1.55 (m, 2H, CH₂); 0.84 (t, J = 7.3 Hz, 3H, CH₃); -0.05 (s, 9H, SiCH₃). ¹³C: 48.2 (BCH); 23.0 (CH₂); 19.1 (CH₃); 0.2 (SiCH₃). ¹⁹F: -132.8 (F₀); -150.9 (F_p); -162.9 (F_m). ¹¹B: 72.2 (770).

4.4 Hydroboration of 6-trimethylsilyl-1-hexene

6-trimethylsilyl-1-hexene (14.7 mg, 0.094 mmol) was added to a suspension of 1 (32.5 mg, 0.094 mmol) in C_6D_6 , producing borane 6 exclusively. NMR data for 6: 1H : 1.92 (t, J = 7.7 Hz, 2H, CH_2B); 1.50 (tt, J = 7.3, 7.7 Hz, 2H, BCH_2CH_2); 1.37 (m, 2H, CH_2); 1.31 (m, 4H, CH_2); 0.48 (m, 2H, $SiCH_2$); 0.01 (s, 9H, $SiCH_3$). ^{13}C : 33.6, 32.7, 25.2, 24.1 (CH_2); 32.4 (BC); 16.9 (SiC); -1.7 ($SiCH_3$). ^{19}F : -132.4 (F_0); -149.1 (F_p); -162.8 (F_m). ^{11}B : 73.6 (900). The sample was thermally equilibrated at 80°C for 18 hours resulting in a ratio of 15:85 (6:7). NMR data for 7: ^{1}H : 2.67 (dd, J = 3.0, 9.8 Hz, 1H, BCH); 1.78, 1.62 (m, 2H, $BCHCH_2$); 1.28, 1.16 (m, 6H, CH_2); 0.81 (t, J = 6.8 Hz, 3H, CH_3); -0.02 (s, 9H, $SiCH_3$). ^{13}C : 45.9 (BCH); 34.3, 31.8, 29.7, 22.7 (CH_2); 14.0 (CH_3); 0.3 ($SiCH_3$). ^{19}F : -132.7 (F_0); -151.1 (F_p); -163.0 (F_m). ^{11}B : 71.7 (1000).

4.5 Preparation of (Z)-1-trimethylsilyl-2-(4-fluorophenyl)ethene, 8d.

This vinyl silane was prepared using a literature procedure [15] from trimethylsilyl(4-fluorophenyl)acetylene (0.30 g, 1.6 mmol). The compound was obtained (0.23 g, 1.2 mmol) as a colourless liquid after workup and purification by vacuum distillation in 77% yield. ¹H NMR (CDCl₃): 7.34 (d, J = 15.1 Hz, 1H, =CH); 7.26 (dd, $^{4}J_{HF}$ = 5.7 Hz and J = 8.5 Hz, 2H, CH_{aryl}); 7.02 (dd, $^{3}J_{HF}$ = 8.7 Hz, 2H, CH_{aryl}); 5.86 (d, 1H, =CH); 0.09 (s, 9H, SiCH₃). ¹³C NMR (CDCl₃): 162.5 (d, $^{1}J_{CF}$ = 247.0 Hz, FC_{ipso}); 145.6, 133.2 (=CH); 136.5 (d, $^{4}J_{CF}$ = 4.2 Hz, C_{ipso}); 130.0 (d, $^{3}J_{CF}$ = 7.4 Hz, CH_{aryl}); 115.0 (d, $^{2}J_{CF}$ = 21.9 Hz, CH_{aryl}); 0.4 (SiCH₃). Mass spectrum: 194 (9, M⁺); 179 (35, M⁺-CH₃); 73 (60, (CH₃)₃Si⁺). Exact mass calcd. for C₁₁H₁₅FSi: 194.0927. Found: 194.0910.

4.6 Hydroboration of (Z)-1-trimethylsilyl-2-(4-X-phenyl)ethenes, 8a-d.

Vinyl silanes 8a-d were hydroborated using ≈ 50 mg of 1 and one equivalent of olefin in C_6D_6 . The reactions were monitored by ¹H NMR spectroscopy until the kinetic product mixture converted completely to the thermodynamic products 9a-d. NMR data for 9a: ¹H: 6.98 (m, J = 7.3 Hz, 2H, CH_{meta}); 6.90 (t, 1H, CH_{para}); 6.82 (d, J = 7.3 Hz, 2H, CH_{ortho}); 3.17 (dd, J = 5.1, 10.2 Hz, BCH); 2.90 (m, 2H, CH₂); -0.04 (s, 9H, SiCH₃). ¹³C: 143.6 (C_{ipso}); 128.5, 127.7, 126.3 (C_6H_5); 44.6 (BCH); 34.1 (CH₂); 0.2 (SiCH₃). ¹⁹F: -132.9 (F₀); -151.2 (F_p); -163.2 (F_m). ¹¹B: 72.2 (1030). NMR data for **9b**: ¹H: 6.83 (d, J = 8.0 Hz, 2H, CH_{aryl}); 6.75 (d, 2H, CH_{aryl}); 3.17 (dd, J = 5.1, 10.1 Hz, 1H, BCH); 2.91 (m, 2H, CH₂); 2.04 (s, 3H, CH₃); -0.02 (s, 9H, SiCH₃). ¹³C: 140.7, 135.7 (C_{ipso}); 129.2, 127.8 (CH_{arvl}); 44.8 (BCH); 33.8 (CH₂); 20.7 (CH₃); 0.2 (SiCH₃). ¹⁹F: -131.1 (F₀); -149.7 (F_p); -161.5 (F_m). ¹¹B: 72.6 (1350). NMR data for **9c**: ¹H: 6.75 (d, J = 8.7 Hz, 2H, CH_{aryl}); 6.63 (d, 2H, CH_{aryl}); 3.27 (s, 3H, OCH_3); 3.15 (dd, J = 5.4, 10.2) Hz, BCH); 2.90 (m, 2H, CH₂); -0.02 (s, 9H, SiCH₃). ¹³C: 159.0 (OC_{ipso}); 136.1 (C_{ipso}); 129.1, 114.6 (CH_{aryl}); 55.4 (OCH₃); 45.6 (BCH); 33.7 (CH₂); 0.7 (SiCH₃). ¹⁹F: -131.0 (F₀); -149.4 (F_p); -161.5 (F_m). ¹¹B: 72.6 (1210). NMR data for **9d**: ¹H: 6.66 (dd, ${}^{3}J_{HF} = 8.5$ Hz and J = 8.7 Hz, 2H, CH_{aryl}); 6.58 (dd, ${}^{4}J_{HF} = 5.4$ Hz and J = 8.7 Hz, 2H, CH_{aryl}); 3.05 (dd, J = 6.3, 8.8 Hz, BCH); 2.78 (m, 2H, CH_2); -0.05 (s, 9H, $SiCH_3$). ¹³C: 161.7 (d, ${}^{1}J_{CF} = 245.0 \text{ Hz}$, FC_{inso}); 139.2 (d, ${}^{4}J_{CF}$ = 3.4 Hz, C_{ipso}); 129.1 (d, ${}^{3}J_{CF}$ = 7.4 Hz, CH_{aryl}); 115.3 (d, ${}^{2}J_{CF}$ = 21.0 Hz, CH_{aryl}); 44.8 (BCH); 33.3 (CH₂); 0.2 (SiCH₃). ${}^{19}F$: -116.9 (CF); -131.2 (F_o); -149.2 (F_p); -161.2 (F_m). ${}^{11}B$: 72.8 (1440).

4.7 Hydroboration of 1-phenyl-1-trimethylsilylethene, 10.

Vinylsilane **10** (28.3 mg, 0.162 mmol) was added to a suspension of **1** (56.0 mg, 0.162 mmol) in C_6D_6 and the product **11** assayed by NMR spectroscopy. NMR data for **11**: 1 H: 6.89 (m, J = 7.5 Hz, 2H, CH_{meta}); 6.78 (t, 1H, CH_{para}); 6.72 (d, J = 7.0 Hz, 2H, CH_{ortho}); 2.62 (dd, 3 J_H = 12.5 Hz, 2 J_{gem} = 16.1 Hz, 1H, BC H_2); 2.30 (dd, 1H, SiCH); 2.14 (dd, 3 J_H = 3.3 Hz, 1H, BC H_2); -0.06 (s, 9H, SiC H_3). 13 C: 144.1 (C_{ipso}); 128.4, 127.1, 125.1 (C_6H_5); 32.3 (SiC H_3); 30.7 (BC H_2); -3.4 (SiC H_3). 19 F: -131.9 (F_0); -149.9 (F_p); -163.3 (F_m). 11 B: 73.0 (1030).

4.8 Hydroboration of (Z)-1,2-diphenyl-1-trimethylsilylethene, 12.

Vinylsilane 12 (37.0 mg, 0.147 mmol) was added to a suspension of 1 (51.0 mg, 0.147 mmol) in C_6D_6 and the product 13 assayed by NMR spectroscopy. NMR data for 13: 1 H: 6.93-6.82 (m, 6H, CH_{aryl}); 6.78 (m, 3H, CH_{aryl}); 6.70 (t, J = 7.3 Hz, 1H, CH_{para}); 4.77 (d, J = 12.3 Hz, 1H, BCH); 3.25 (d, 1H, SiCH); -0.06 (s, 9H, SiCH₃). 13 C: 141.4, 133.7 (C_{ipso}); 132.7, 129.2, 128.5, 128.0, 127.5, 124.9 (CH_{aryl}); 47.2 (BCH); 37.3 (SiCH); -2.1 (SiCH₃). 19 F: -128.9 (F_o); -148.9 (F_p); -162.8 (F_m). 11 B: 65.8 (1670).

4.9 Hydroboration of 1-trimethylsilyl-2,2-diphenylethene, 15.

Vinylsilane **15** (36.5 mg, 0.145 mmol) was added to a suspension of **1** (50.0 mg, 0.145 mmol) in C_6D_6 and the product **16** assayed by NMR spectroscopy. NMR data for **16**: 1H : 7.29, 6.98 (d, J = 7.7, 7.7 Hz, 4H, CH_{ortho}); 7.04, 6.77 (m, J = 7.5, 7.7 Hz, 4H, CH_{meta}); 6.92, 6.67 (t, J = 7.3, 7.3 Hz, 2H, CH_{para}); 4.43 (d, J = 11.5 Hz, 1H, CH); 4.27 (d, 1H, BCH); -0.08 (s, 9H, $SiCH_3$). ^{13}C : 150.4, 145.8 (C_{ipso}); 129.0, 128.9, 127.8, 126.9, 126.2, 126.0 (CH_{aryl}); 52.6 (CH); 47.2 (BCH); 1.2 ($SiCH_3$). ^{19}F : -131.9 (F_0); -149.9 (F_p); -163.1 (F_m). ^{11}B : 78.4 (1280).

4.10 Preparation of (E)-1-phenyl-1-trimethylsilyl-2-(4-X-phenyl)ethenes, 17b-d, and (E)-1-phenyl-2-(4-X-phenyl)-2-trimethylsilylethenes, 19b-d.

Substituted arylvinyl silanes were prepared by N,N-dimethylacetamide catalyzed addition of catecholborane (HBcat) to a trimethylsilylacetylene using the method of Fu *et al.* [28] with subsequent palladiumcatalyzed coupling of the boronate ester with the appropriate aryl bromide according to Keay's procedure [29] without purification of the catecholborane intermediate. Compounds 17b-d and 19b-d were purified by column chromatography, eluting with hexanes.

- (E)-1-phenyl-1-trimethylsilyl-2-(4-methylphenyl)ethene, 17b.
- (E)-1-phenyl-1-trimethylsilyl-2-(4-methoxyphenyl)ethene, 17c.
- (E)-1-phenyl-1-trimethylsilyl-2-(4-fluorophenyl)ethene, 17d.

These three substrates were prepared using the Fu/Keay procedure from the appropriate aryltrimethysilyl acetylene and iodobenzene. 17b: 4-MeC₆H₄C≡CSiMe₃ (0.26 g, 1.4 mmol) was hydroborated (2.7 mL of 1M HBcat in THF) using DMA (0.1 mL) as catalyst in CH₂Cl₂ (10 mL). The solvent was removed in vacuo then Pd(PPh₃)₄ (78 mg, 0.07 mmol); toluene/ethanol/water (8/8/2 mL); iodobenzene (0.15 mL, 2.7 mmol); and Na₂CO₃ (0.50 g, 4.7 mmol) were added to the residue. The resulting solution was refluxed for 4 hours which afforded 17b (0.18 g, 0.67 mmol) as a colourless oil in 49% yield. IR (KBr): 3048 (w); 2951 (m); 1587 (m, C=C); 1506 (m); 1440 (m); 1250 (s); 839 (vs, TMS); 761 (s); 695 (s). ¹H NMR (CDCl₃): 7.32 (t, J = 7.5 Hz, 2H, CH_{arvl}); 7.26 (s, 1H, =CH); 7.21 (m, 5H, CH_{arvl}); 7.15 (d, 2H, CH_{arv}); 2.37 (s, 3H, CH_3); -0.04 (s, 9H, $SiCH_3$). ¹³C NMR (CDCl₃): 147.6, 146.7, 137.3, and 137.1 (C_{quat}); 145.3 (=CH); 128.8, 128.7, 128.2, 127.4, 125.9 (CH_{arvl}); 21.4 (CH₃); 1.0 (SiCH₃). Mass spectrum: 266 (10, M^+); 251 (8, M^+ -CH₃); 73 (100, (CH₃)₃Si⁺). Exact mass calcd. for $C_{18}H_{22}Si: 266.1491$. Found: 266.1472. Anal. calcd. for $C_{18}H_{22}Si: C$, 81.14; H, 8.32. Found: C, 81.12; H, 8.24. 17c: 4-MeOC₆H₄C≡CSiMe₃ (0.53 g, 2.6 mmol) was hydroborated (5.2 mL of 1M HBcat in THF) using DMA (0.1 mL) as catalyst in CH₂Cl₂ (10 mL). The solvent was removed in vacuo then Pd(PPh₃)₄ (78 mg, 0.07 mmol); toluene/ethanol/water (8/8/2 mL); iodobenzene (0.58 mL, 5.2 mmol); and Na₂CO₃ (0.62 g, 5.8 mmol) were added to the residue. The resulting solution was refluxed for 15 hours (overnight) which afforded 3c (0.11 g, 0.38) mmol) as a colourless oil in 15% yield. ¹H NMR (CDCl₃): 7.32 (dd, J = 6.0, 7.3 Hz, 2H, CH_{arvl}); 7.26 (d, J = 8.6 Hz, 2H, CH_{arvl}); 7.24-7.18 (m, 4H, CH_{arvl} , =CH); 6.89 (d, 2H, CH_{arvl}); 3.83 (s, 3H, OC H_3); -0.02 (s, 9H, SiC H_3). ¹³C NMR (CDCl₃): 158.9, 147.7, 146.2, 132.7 (C_{quat}) ; 144.9 (=CH); 130.0, 128.2, 127.4, 125.8, 125.8, 113.5 (CH_{arv}); 55.4 (OCH₃); 1.1 (SiCH₃). Mass spectrum: 282 (24, M^+); 267 (14, M^+ -CH₃); 73 (100, (CH₃)₃Si⁺). Exact mass calcd. for $C_{18}H_{22}OSi: 282.1440$. Found: 282.1418. 17d: 4-FC₆H₄C \equiv CSiMe₃ (0.30 g, 1.6 mmol) was hydroborated (3.1 mL of 1M HBcat in THF) using DMA (0.1 mL) as catalyst in CH₂Cl₂ (10 mL). The solvent was removed in vacuo then Pd(PPh₃)₄ (75 mg, 0.06 mmol); toluene/ethanol/water (8/8/2 mL);, iodobenzene (0.35 g, 3.1 mmol); and Na₂CO₃ (0.56 g, 5.3 mmol) were added to the residue. The resulting solution was refluxed for 4 hours which afforded 17d (0.11 g, 0.40 mmol) as a colourless oil 26% yield. IR (KBr): 3051 (w); 2957 (m); 1595 (C=C); 1504 (s); 1441 (w); 1252 (m) 1219 (m); 838 (s, TMS); 764 (m); 698 (m). ¹H NMR (CDCl₃): 7.31 (dd, J = 7.1, 7.7 Hz, 2H, CH_{arvl}); 7.26 (dd, ${}^{4}J_{HF}$ = 5.5 Hz and J = 8.6 Hz, 2H, CH_{arvl}); 7.21 (t, 1H, CH_{arvl}); 7.20 (s, 1H, =CH); 7.17 (d, 2H, CH_{arvl}); 7.02 (dd, ${}^{3}J_{HF} = 8.7$ Hz, 2H, CH_{aryl}); -0.07 (s, 9H, SiC H_3). ¹³C NMR (CDCl₃): 162.4 (d, ¹J_{CF} = 235.8 Hz_{pso}F); 147.9, 147.2 (C_{quat}) ; 143.9 (=CH); 136.2 (d, ${}^{4}J_{\text{CF}} = 3.8 \text{ Hz}$, $C_{para}F$); 130.4 (d, ${}^{3}J_{\text{CF}} = 8.5 \text{ Hz}$, $C_{meta}F$); 128.2, 127.3, 126.0 (CH_{arvl}); 115.0 (d, ${}^{2}J_{CF} = 21.9 \text{ Hz}$, $C_{ortho}F$); 0.9 (Si CH_{3}). Mass spectrum: 270 (22, M^{+}); 255 (16, M^{+} -CH₃); 196 (46, M^{+} -(CH₃)₃Si-H); 73 (100, (CH₃)₃Si⁺). Exact mass calcd. for $C_{17}H_{19}FSi: 270.1241$. Found: 270.1231. Anal. calcd for $C_{17}H_{19}FSi: C, 75.51$; H, 7.08. Found: C, 75.53; H, 7.13. (E)-1-phenyl-2-(4-methylphenyl)-2-trimethylsilylethene, 19b.

These three substrates were prepared using the above procedure from trimethylsilylphenylacetylene and the appropriate aryl bromide. 19b: PhC≡CSiMe₃ (0.50 g, 2.9

⁽E)-1-phenyl-2-(4-methoxyphenyl)-2-trimethylsilylethene, 19c.

⁽E)-1-phenyl-2-(4-fluorophenyl)-2-trimethylsilylethene, 19d.

mmol) was hydroborated (5.8 mL of 1M solution of HBcat in THF) using DMA (0.1 mL) as catalyst in CH₂Cl₂ (10 mL). The solvent was removed in vacuo then Pd(PPh₃)₄ (23 mg, 0.02) mmol); toluene/ethanol/water (8/8/2 mL); p-bromotoluene (0.50 g, 2.9 mmol); and Na₂CO₃ (0.572 g, 5.4 mmol) were added to the residue. The resulting solution was refluxed for 4 hours affording 19b (0.21 g, 0.81 mmol) in 28% yield as a colourless oil. IR (KBr): 3019 (m); 2955 (s); 1588, 1572 (m, C=C); 1505 (s); 1443 (m); 1248 (s); 838 (vs, TMS); 807 (s); 750 (s); 697 (s). ¹H NMR (CDCl₃): 7.40-7.28 (m, 5H, C_6H_5); 7.32 (s, 1H, =CH); 7.17, 7.15 (AB₀, J = 8.3) Hz, 4H, C_6H_4); 2.40 (s, 3H, CH_3); -0.01 (s, 9H, $SiCH_3$). ¹³C NMR (CDCl₃): 147.3, 144.5, 140.4, and 135.4 (C_{quat}); 145.0 (=CH); 128.9, 128.8, 128.1, 127.3, and 127.3 (CH_{arvl}); 21.3 (CH₃); 1.0 $(SiCH_3)$. Mass spectrum: 266 (76, M⁺); 251 (57, M⁺-CH₃); 73 (100, (CH₃)₃Si⁺). Exact mass calcd. for C₁₈H₂₂Si: 266.1491. Found: 266.1477. Anal. calcd for C₁₈H₂₂Si: C, 81.14; H, 8.32. Found: C, 81.12; H, 8.24. 19c: PhC≡CSiMe₃ (1.61 g, 9.2 mmol) was hydroborated (18.4 mL of 1M solution of HBcat in THF) using DMA (0.3 mL) as catalyst in CH₂Cl₂ (10 mL). The solvent was removed in vacuo then Pd(PPh₃)₄ (88 mg, 0.08 mmol); toluene/ethanol/water (8/8/2 mL); pbromoanisole (2.31 mL, 18.5 mmol); and Na₂CO₃ (2.0 g, 18.9 mmol) were added to the residue. The resulting solution was refluxed for 14 hours which afforded 19c (0.29 g, 1.1 mmol) in 11% yield as a colourless oil. IR (KBr): 3057 (m); 2954 (s); 1605 (s, C=C); 1506 (vs); 1462 (m); 1442 (s); 1281 (s); 1246 (vs); 1175 (s); 1037 (s); 842 (vs, TMS); 777 (m); 755 (s); 698 (s). ¹H NMR (CDCl₃): 7.45-7.34 (m, 6H, C_6H_5 and =CH); 7.25, 6.98 (d, J = 8.6 Hz, 4H, C_6H_4); 3.88 (s, 3H, OCH₃); 0.08 (s, 9H, SiCH₃). ¹³C NMR (CDCl₃): 158.1 (C_{ipso} OMe); 146.8, 140.3, 139.8 (C_{quat}) ; 144.8 (=CH); 128.8, 128.3, 128.0, 127.2, 113.6 (CH_{arv}); 55.3 (CH₃); 1.0 (SiCH₃). Mass spectrum: 282 (91, M⁺); 267 (81, M⁺-CH₃); 73 (100, (CH₃)₃Si⁺). Exact mass calcd. for C₁₈H₂₂OSi: 282.1440. Found: 282.1423. Anal. calcd. for C₁₈H₂₂OSi: C, 76.54; H, 7.85. Found: C, 76.95; H, 8.06. 19d: PhC≡CSiMe₃ (0.60 g, 3.4 mmol) was hydroborated (6.8 mL of 1M solution of HBcat in THF) using DMA (0.1 mL) as catalyst in CH₂Cl₂ (10 mL). The solvent was removed in vacuo then Pd(PPh₃)₄ (35 mg, 0.03 mmol); toluene/ethanol/water (8/8/2 mL); pbromofluorobenzene (0.80 mL, 6.9 mmol); and Na₂CO₃ (0.73 g, 6.9 mmol) were added to the residue. The resulting solution was refluxed for 4 hours which afforded 19d (0.26 g, 0.95 mmol) in 28% yield as a white solid. IR (KBr): 3038 (w); 2956 (m); 1588 (m, C=C); 1501 (s); 1442 (m); 1252 (s); 1219 (s); 1157 (m); 838 (vs, TMS); 753 (s); 696 (s). ¹H NMR (CDCl₃): 7.33 (m, 5H, C_6H_5); 7.29 (s, 1H, =CH); 7.17 (dd, ${}^4J_{HF} = 5.5$ Hz, J = 8.7 Hz, 2H, CH); 7.03 (dd, J = 8.7Hz, ${}^{3}J_{HF} = 8.8$ Hz, 2H, CH); -0.03 (s, 9H, SiCH₃). ${}^{13}C$ NMR (CDCl₃): 161.5 (d, ${}^{1}J_{CF} = 251.5$ $Hz_{pso}F$); 146.5, 140.0 (C_{quat}); 145.5 (=CH); 143.3 (d, ${}^{4}J_{CF} = 3.9$ Hz, C_{para}); 128.8 (d, ${}^{3}J_{CF} = 8.1$ Hz, C_{meta} H); 115.0 (d, ${}^{2}J_{CF} = 21.4$ Hz, C_{ortho}); 128.8, 128.1, 127.4 ($C_{6}H_{5}$); 0.8 (SiCH₃). Mass spectrum: 270 (73, M⁺); 255 (62, M⁺-CH₃); 73 (100, (CH₃)₃Si⁺). Exact mass calcd. for C₁₇H₁₉FSi: 270.1240. Found: 270.1215. Anal. calcd. for C₁₇H₁₉FSi: C, 75.51; H, 7.08. Found: C, 75.59; H, 7.26.

4.11 Hydroboration of (E)-1-phenyl-1-trimethylsilyl-2-(4-X-phenyl)ethenes, 17b-d.

Vinylsilanes 17b-d were added to a suspension of 1 in C₆D₆ and the products 18b-d assayed by NMR spectroscopy. 17b (25.0 mg, 0.094 mmol) and 1 (32.0 mg, 0.094 mmol) gave borane

18b. NMR data for **18b**: ¹H: 7.28, 6.89 (d, J = 7.9 Hz, 4H, C_6H_4); 6.85 (m, 4H, $CH_{meta, ortho}$); 6.75 (t, J = 6.9 Hz, 1H, CH_{para}); 4.53 (d, J = 12.8 Hz, 1H, BCH); 2.96 (d, 1H, SiCH); 1.95 (s, 3H, CH_3); -0.30 (s, 9H, Si CH_3). ¹³C: 144.6, 137.5, 134.8 (C_{inso}); 130.7, 130.3, 128.5, 127.7, 125.0 (CH_{arv}); 50.1 (BCH); 38.1 (SiCH); 20.8 (CH₃); -2.0 (SiCH₃). 19 F: -130.5 (F₀); -149.9 (F_p) ; -161.6 (F_m) . ¹¹B: 78.5 (1790). **17c** (22.0 mg, 0.078 mmol) and 1 (27.1 mg, 0.078 mmol) gave borane 18c. NMR data for 18c: ¹H: 7.25, 6.67 (d, J = 8.6 Hz, 4H, C_6H_4); 6.86 (m, 4H, $CH_{meta.ortho}$); 6.76 (t, J = 7.1 Hz, 1H, CH_{para}); 4.51 (d, J = 12.9 Hz, 1H, BCH); 3.18 (s, 3H, OCH₃); 2.92 (d, 1H, SiCH); -0.29 (s, 9H, SiCH₃). ¹³C: 159.7, 144.7, 128.8 (C_{ipso}); 132.1, 128.5, 127.6, 125.0, 115.1 (CH_{arvl}); 54.7 (OCH₃); 49.4 (BCH); 38.2 (SiCH); -2.0 (SiCH₃). ¹⁹F: -130.5 (F_o); -149.9 (F_p); -161.7 (F_m). ¹¹B: 72.5 (3640). **17d** (32.0 mg, 0.118 mmol) and **1** (41.0 mg, 0.118 mmol) gave borane **18d**. NMR data for **18d**: 1 H: 7.12 (dd, 4 J_{HF} = 5.3 Hz and J = 8.5 Hz, 2H, C_6H_4); 6.84 (m, J = 7.1 Hz, 2H, CH_{meta}); 6.78 (m, 1H, CH_{para}); 6.74 (d, 2H, CH_{ortho}); 6.69 SiCH₃). ¹³C: 162.4 (d, ¹J_{CF} = 247.0 Hz, FC_{ipso}); 144.2 (C_{ipso}); 133.7 (d, ⁴J_{CF} = 2.6 Hz, C_{ipso}); 132.1 (${}^{3}J_{CF} = 7.6 \text{ Hz}$, CH_{arvl}); 128.6, 127.6, 125.1 (CH_{arvl}); 116.4 (d, ${}^{2}J_{CF} = 21.6 \text{ Hz}$, CH_{arvl}); 49.4 (BCH); 38.1 (SiCH); -2.1 (SiCH₃). ¹⁹F: -114.0 (CF); -130.6 (F₀); -149.4 (F_p); -161.5 (F_m). ¹¹B: 74.8 (1930).

4.12 Hydroboration of (E)-1-phenyl-2-(4-X-phenyl)-2-trimethylsilylethenes, 19b-d.

Vinylsilanes 19b-d were added to a suspension of 1 in C₆D₆ and the product 20b-d assayed by NMR spectroscopy. 19b (30.0 mg, 0.113 mmol) and 1 (39.0 mg, 0.113 mmol) gave borane **20b.** NMR data for **20b**: ¹H: 7.33 (d, J = 7.6 Hz, 2H, CH_{ortho}); 7.02 (m, 2H, CH_{meta}); 6.91 (t, J = 7.4 Hz, 1H, CH_{para}); 6.70 (m, 4H, C_6H_4); 4.51 (d, J = 12.9 Hz, 1H, BCH); 2.94 (d, 1H, SiCH); 2.01 (s, 3H, CH₃); -0.31 (s, 9H, SiCH₃). ¹³C: 141.3, 138.5, 134.6 (C_{ipso}); 130.6, 129.5, 129.2, 127.7, 127.6 (CH_{arvl}); 50.8 (BCH); 37.6 (SiCH); 20.5 (CH₃); -2.0 (SiCH₃). ¹⁹F: -130.5 (F₀); -149.9 (F_p); -161.8 (F_m). ¹¹B: 77.1 (1830). **19c** (36.0 mg, 0.127 mmol) and **1** (44.0 mg, 0.127 mmol) gave borane **20c**. NMR data for **20c**: 1 H: 7.34 (d, J = 7.5 Hz, 2H, CH_{ortho}); 7.04 (m, 2H, CH_{meta}); 6.92 (t, J = 7.4 Hz, 1H, CH_{para}); 6.74, 6.50 (d, J = 8.5 Hz, 4H, C_6H_4); 4.49 (d, J = 12.9) Hz, 1H, BCH); 3.29 (s, 3H, OCH₃); 2.94 (d, 1H, SiCH); -0.29 (s, 9H, SiCH₃). 13 C: 157.8, 139.2, 136.0 (C_{ipso}); 130.6, 139.4, 128.6, 127.6, 115.5 (CH_{arvI}); 54.8 (OCH₃); 52.4 (BCH); 38.3 (SiCH); -0.6 (SiCH₃). 19 F: -130.6 (F_o); -149.9 (F_p); -161.8 (F_m). 11 B: 74.9 (1930). **19d** (15.6) mg, 0.058 mmol) and 1 (20.0 mg, 0.058 mmol) gave borane 20d. NMR data for 20d: ¹H: 7.28 (d, J = 7.6 Hz, 2H, CH_{ortho}); 7.01 (m, 2H, CH_{meta}); 6.90 (t, J = 7.4 Hz, 1H, CH_{para}); 6.60 (br m, 2H, C_6H_4); 6.54 (dd, ${}^3J_{HF} = 8.3$ Hz and J = 8.4 Hz, 2H, C_6H_4); 4.41 (d, J = 12.9 Hz, 1H, BCH); 2.86 (d, 1H, SiCH); -0.38 (s, 9H, SiCH₃). ¹³C: 160.9 (d, ${}^{1}J_{CF} = 244.0 \text{ Hz}, FC_{ipso}$); 139.9 (d, ${}^{4}J_{CF}$ = 2.6 Hz, C_{inso}); 137.8 (C_{inso}); 130.7, 129.5, 129.5 (CH_{arvl}); 127.8 (d, ${}^{3}J_{CF}$ = 7.2 Hz, CH_{arvl}); 115.3 (d, ${}^{2}J_{CF} = 20.9 \text{ Hz}$, CH_{aryl}); 50.6 (BCH); 37.2(SiCH); -2.1 (SiCH₃). ${}^{19}F$: -117.7 (CF); -130.5 (F_0); -149.1 (F_p); -161.3 (F_m). ¹¹B: 74.7 (1730).

4.13 Thermolysis of Boranes 13, 16, 18b-d and 20b-d.

Solutions of these boranes were generated as described above and loaded into sealable 5 mm NMR tubes. The tubes were flame sealed and placed in a thermostated oil bath set to temperatures of between 80 and 120°C depending on the substrate. The progress of the rearrangements were monitored by ¹H NMR spectroscopy.

4.14 Reaction of in situ Generated Lithium Bis-(pentafluorophenyl)phenyl-(E)-2-phenylethenylborate with Trimethylsilyl Triflate.

Phenylacetylene (16 μ L, 0.145 mmol) was added to a suspension of 1 (50 mg, 0.145 mmol) in C_6D_6 (0.5 mL). When all of 1 had dissolved, phenyl lithium (12 mg, 0.145 mmol) was added to the solution and the reaction was stirred for 30 minutes. The reaction mixture was placed in a 5 mm NMR tube capped with a septum and the sample was heated to reflux temperature for 5 minutes. The ¹H NMR spectrum at this point indicated that the product of phenylacetylene hydroboration was completely consumed and a new product present. Addition of TMSOTf (29 μ L, 0.145 mmol) led to an immediate precipitation of a gelatinous white solid. The sample was filtered to remove the precipitate, then the ¹H NMR spectrum and GC/MS of the sample were obtained, indicating the presence of (E)-1-trimethylsilyl-2-phenylethene and borane 14 as major components. Resonances for a minor product are consistent with the diastereomer of borane 13.

4.15 Calculations

All structures were built using the SPARTAN molecular modeling program[30]. All structures were geometry-optimized using semi-empirical methods at the AM1 level of theory. Preliminary transition state structures were obtained by averaging the geometry-optimized reactant and product structures. The key atoms were fixed in position and the entire structure was geometry-optimized under those constraints. The geometry-optimized structure was submitted for transition state calculation with no restraints. The search led to a saddle point on the potential energy surface which was confirmed as a legitimate transition structure by frequency analysis, showing an imaginary frequency with a vibration corresponding to the movement along the reaction coordinate. Charges were calculated at the AM1 level using Mulliken population analysis.

5. Acknowledgments. Funding for this work from the Natural Sciences and Engineering Research Council of Canada in the form of a Research Grant to WEP and Scholarship support to DJP (1994-98). WEP also thanks the Alfred P. Sloan Foundation for a Research Fellowship (1996-2000).

6. References.

- [1] Seyferth, D. J. Am. Chem. Soc. 1959, 81, 1844.
- [2] a) Soderquist, J. A.; Brown, H. C. J. Org. Chem. 1980, 45, 3571. b) Lim, T. F. O.; Myers, J. K.; Rogers, G. T.; Jones, P. R. J. Organomet. Chem. 1977, 135, 249. c) Soderquist, J. A.; Rivera, I.; Negron, A. J. Org. Chem. 1989, 54, 4051. d) Soderquist, J. A.; Hwang Lee, S.-J. Tetrahedron 1988, 44, 4033.
- [3] a) Soderquist, J. A.; Hassner, A. J. Org. Chem. 1983, 48, 1801. b) Soderquist, J. A.; Shiau, F.-Y.; Lemesh, R. A. J. Org. Chem. 1984, 49, 2565.
- [4] Lambert, J. B. Tetrahedron 1990, 46, 2677.
- [5] a) Parks, D. J.; Spence, R. E. v H.; Piers, W. E. Angew. Chem. Int. Ed. Engl. 1995, 34, 809. b) Parks, D. J.; Piers, W. E.; Yap, G. P. A. Organometallics, in press.
- [6] a) Brown, H. C.; Zweifel, G. J. Am. Chem. Soc. 1960, 82, 4708. b) Brown, H. C.; Zweifel, G. J. Am. Chem. Soc. 1961, 83, 2544. c) Pasto, D. J.; Kang, S.-Z. J. Am. Chem. Soc. 1968, 90, 3797. c) Wang, X.; Li, Y.; Wu, Y.-D.; Paddon-Row, M. N.; Rondan, N. G.; Houk, K. N. J. Org. Chem. 1990, 55, 2601 and references therein.
- [7] a) Binger, P.; Köster, R. Synthesis 1973, 309. b) Corey, E. J.; Seibel, W. L. Tetrahedron Lett. 1986, 27, 905. c) Wang, K. K.; Chu, K. H. J. Org. Chem. 1984, 49, 5175.
- [8] For references on vinylborate reactions with electrophiles see: a) Evans, D. A.; Crawford, T. C.; Thomas, R. C.; Walker, J. A. J. Org. Chem. 1976, 41, 3947. b) Brown, H. C.; Basavaiah, D.; Kulkarni, S. U.; Bhat, N. G.; Vara Prasad, J. V. N. J. Org. Chem. 1988, 53, 239. c) Brown, H. C.; Basavaiah, D.; Kulkarni, S. U.; Lee, H. P.; Negishi, E.; Katz, J.-J. J. Org. Chem. 1986, 51, 5270. d) Brown, H. C.; Imai, T.; Bhat, N. G. J. Org. Chem. 1986, 51, 5277. e) Brown, H. C.; Basavaiah, D.; Kulkarni, S. U. J. Org. Chem. 1982, 47, 3808.
- [9] Swain, C. G.; Lupton, E. C. J. Am. Chem. Soc. 1968, 90, 4328.
- [10] Brook, A. G.; Bassindale, A. R. in "Rearrangements in Ground and Excited States", de Mayo, P., Ed. Academic Press: New York, 1980, pg 190.
- [11] For recent examples of 1,2-silyl migration see: a) Danheiser, R. L.; Carini, D. J.; Basak, A. J. Am. Chem. Soc. 1981, 103, 1604. b) Danheiser, R. L.; Kwasigroch, C. A.; Tsai, Y.-M. J. Am. Chem. Soc. 1985, 107, 7233. c) Becker, D. A.; Danheiser, R. L. J. Am. Chem. Soc. 1989, 111, 389. d) Danheiser, R. L.; Stoner, E. J.; Koyama, H.; Yamashita, D. S.; Klade, C. A. J. Am. Chem. Soc. 1989, 111, 4407. e) Knölker, H.-J.; Jones, P. G.; Panek, J.-B. Synlett. 1990, 429. f) Yamamoto, Y.; Noda, M.; Ohno, M.; Eguchi, S. J. Org. Chem. 1997, 62, 1292. g) Miura, K.; Hondo, T.; Saito, H.; Ito, H.; Hosomi, A. J. Org. Chem. 1997, 62, 8292.
- [12] Parks, D. J.; Piers, W. E.; Parvez, M.; MacQuarrie, D. C.; Zaworotko, M. J. Organometallics 1998, 17, 1369.
- [13] Jones, R. G., Gilman, H. Org. React. 1951, 6, 352.
- [14] Connoly, J. W.; Fryer, P. F. J. Organomet. Chem. 1971, 30, 315.
- [15] Soderquist, J. A.; Santiago, B. Tetrahedron Lett. 1990, 36, 5113.
- [16] Eisch, J. Organometallic Syntheses, Vol. 2. Eisch. J.; King, R. B. Eds. New York, Academic Press, 1981, 160.
- [17] Hudrlick, P. F.; Agwaramgbo, E. L.; Hudrlick, A. M. J. Org. Chem. 1989, 54, 5613.
- [18] Karabelas K, Hallberg A. J. Org. Chem. 1989, 54, 1773.
- [19] Chan, T.H.; Baldassarre, A.; Massuda, D. Synth. Comm. 1976, 801.
- [20] Ikenaga, K. J. Org. Chem. 1987, 52, 1276.
- [21] Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 50, 4467.
- [22] Zweifel, G.; Lewis, W. J. Org. Chem. 1978, 43, 2739.
- [23] Al-Hassan, M. I. J. Organomet. Chem. 1990, 395, 227.
- [24] Crisp, G. T.; Flynn, B. L. J. Org. Chem. 1993, 58, 6614.
- [25] Chambers, R. D.; Chivers, T. J. Chem. Soc. 1965, 3933.

- [26] Deck, P. A.; Beswick, C. L.; Marks, T. J. J. Am. Chem. Soc. 1998, 120, 1772.
- [27] Harris, R. K.; Mann, B. E., Eds. NMR and the Periodic Table. Academic Press: New York, 1978, 99.
- [28] Garrett, C. E.; Fu, G. C. J. Org. Chem. 1996, 61, 3224.
- [29] Maddaford, S. P.; Keay, B. A. J. Org. Chem. 1994, 59, 6501.
- [30] Spartan Version 3.1, Wavefunction Inc., Irvine, California